Search results for "Casson invariant"

showing 2 items of 2 documents

KNOTS WITH UNKNOTTING NUMBER ONE AND GENERALISED CASSON INVARIANT

1996

We extend the classical notion of unknotting operation to include operations on rational tangles. We recall the “classical” conditions (on the signature, linking form etc.) for a knot to have integral (respectively rational) unknotting number one. We show that the generalised Casson invariant of the twofold branched cover of the knot gives a further necessary condition. We apply these results to some Montesinos knots and to knots with less than nine crossings.

CombinatoricsAlgebra and Number TheoryKnot (unit)Unknotting numberMathematics::Geometric TopologyCasson invariantMathematicsKnot theoryFinite type invariantJournal of Knot Theory and Its Ramifications
researchProduct

N=2 topological gauge theory, the Euler characteristic of moduli spaces, and the Casson invariant

1991

We discuss gauge theory with a topological N=2 symmetry. This theory captures the de Rham complex and Riemannian geometry of some underlying moduli space $\cal M$ and the partition function equals the Euler number of $\cal M$. We explicitly deal with moduli spaces of instantons and of flat connections in two and three dimensions. To motivate our constructions we explain the relation between the Mathai-Quillen formalism and supersymmetric quantum mechanics and introduce a new kind of supersymmetric quantum mechanics based on the Gauss-Codazzi equations. We interpret the gauge theory actions from the Atiyah-Jeffrey point of view and relate them to supersymmetric quantum mechanics on spaces of…

High Energy Physics - Theory58Z05PhysicsInstantonFOS: Physical sciencesStatistical and Nonlinear PhysicsRiemannian geometry58D2958G26TopologyCasson invariant58D27Matrix modelModuli spaceHigh Energy Physics::Theorysymbols.namesakeHigh Energy Physics - Theory (hep-th)81Q60Euler characteristic57R20symbolsSupersymmetric quantum mechanicsGauge theoryMathematical PhysicsCommunications in Mathematical Physics
researchProduct